Reset RandomEffectsTracker Object to Default State
Source:R/random_effects.R
rootResetRandomEffectsTracker.RdReset a RandomEffectsTracker object to its "default" state
This function is intended for advanced use cases in which users require detailed control of sampling algorithms and data structures. Minimal input validation and error checks are performed – users are responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree's advanced workflow, we provide several vignettes at stochtree.ai
Examples
n <- 100
p <- 10
rfx_group_ids <- sample(1:2, size = n, replace = TRUE)
rfx_basis <- matrix(rep(1.0, n), ncol=1)
rfx_dataset <- createRandomEffectsDataset(rfx_group_ids, rfx_basis)
y <- (-2*(rfx_group_ids==1)+2*(rfx_group_ids==2)) + rnorm(n)
y_std <- (y-mean(y))/sd(y)
outcome <- createOutcome(y_std)
rng <- createCppRNG(1234)
num_groups <- length(unique(rfx_group_ids))
num_components <- ncol(rfx_basis)
rfx_model <- createRandomEffectsModel(num_components, num_groups)
rfx_tracker <- createRandomEffectsTracker(rfx_group_ids)
rfx_samples <- createRandomEffectSamples(num_components, num_groups, rfx_tracker)
alpha_init <- rep(1,num_components)
xi_init <- matrix(rep(alpha_init, num_groups),num_components,num_groups)
sigma_alpha_init <- diag(1,num_components,num_components)
sigma_xi_init <- diag(1,num_components,num_components)
sigma_xi_shape <- 1
sigma_xi_scale <- 1
rfx_model$set_working_parameter(alpha_init)
rfx_model$set_group_parameters(xi_init)
rfx_model$set_working_parameter_cov(sigma_alpha_init)
rfx_model$set_group_parameter_cov(sigma_xi_init)
rfx_model$set_variance_prior_shape(sigma_xi_shape)
rfx_model$set_variance_prior_scale(sigma_xi_scale)
for (i in 1:3) {
rfx_model$sample_random_effect(rfx_dataset=rfx_dataset, residual=outcome,
rfx_tracker=rfx_tracker, rfx_samples=rfx_samples,
keep_sample=TRUE, global_variance=1.0, rng=rng)
}
rootResetRandomEffectsModel(rfx_model, alpha_init, xi_init, sigma_alpha_init,
sigma_xi_init, sigma_xi_shape, sigma_xi_scale)
rootResetRandomEffectsTracker(rfx_tracker, rfx_model, rfx_dataset, outcome)