Re-initialize a forest model (tracking data structures) from a specific forest in a ForestContainer
Source: R/forest.R
resetForestModel.Rd
Re-initialize a forest model (tracking data structures) from a specific forest in a ForestContainer
Examples
n <- 100
p <- 10
num_trees <- 100
leaf_dimension <- 1
is_leaf_constant <- TRUE
is_exponentiated <- FALSE
alpha <- 0.95
beta <- 2.0
min_samples_leaf <- 2
max_depth <- 10
feature_types <- as.integer(rep(0, p))
leaf_model <- 0
sigma2 <- 1.0
leaf_scale <- as.matrix(1.0)
variable_weights <- rep(1/p, p)
a_forest <- 1
b_forest <- 1
cutpoint_grid_size <- 100
X <- matrix(runif(n*p), ncol = p)
forest_dataset <- createForestDataset(X)
y <- -5 + 10*(X[,1] > 0.5) + rnorm(n)
outcome <- createOutcome(y)
rng <- createCppRNG(1234)
global_model_config <- createGlobalModelConfig(global_error_variance=sigma2)
forest_model_config <- createForestModelConfig(feature_types=feature_types,
num_trees=num_trees, num_observations=n,
num_features=p, alpha=alpha, beta=beta,
min_samples_leaf=min_samples_leaf,
max_depth=max_depth,
variable_weights=variable_weights,
cutpoint_grid_size=cutpoint_grid_size,
leaf_model_type=leaf_model,
leaf_model_scale=leaf_scale)
forest_model <- createForestModel(forest_dataset, forest_model_config, global_model_config)
active_forest <- createForest(num_trees, leaf_dimension, is_leaf_constant, is_exponentiated)
forest_samples <- createForestSamples(num_trees, leaf_dimension,
is_leaf_constant, is_exponentiated)
active_forest$prepare_for_sampler(forest_dataset, outcome, forest_model, 0, 0.)
forest_model$sample_one_iteration(
forest_dataset, outcome, forest_samples, active_forest,
rng, forest_model_config, global_model_config,
keep_forest = TRUE, gfr = FALSE
)
resetActiveForest(active_forest, forest_samples, 0)
resetForestModel(forest_model, active_forest, forest_dataset, outcome, TRUE)