Skip to contents

Background

The “classic” BART model of Chipman, George, and McCulloch (2010)

y=f(X)+ϵf(X)BART(α,β)ϵ𝒩(0,σ2)σ2IG(a,b)\begin{equation*} \begin{aligned} y &= f(X) + \epsilon\\ f(X) &\sim \text{BART}\left(\alpha, \beta\right)\\ \epsilon &\sim \mathcal{N}\left(0,\sigma^2\right)\\ \sigma^2 &\sim \text{IG}\left(a,b\right) \end{aligned} \end{equation*}

is semiparametric, with a nonparametric tree ensemble f(X)f(X) and a homoskedastic error variance parameter σ2\sigma^2. Note that in Chipman, George, and McCulloch (2010), aa and bb are parameterized with a=ν2a = \frac{\nu}{2} and b=νλ2b = \frac{\nu\lambda}{2}.

Setting Priors on Variance Parameters in stochtree

By default, stochtree employs a Jeffreys’ prior for σ2\sigma^2σ21σ2\begin{equation*} \begin{aligned} \sigma^2 &\propto \frac{1}{\sigma^2} \end{aligned} \end{equation*} which corresponds to an improper prior with a=0a = 0 and b=0b = 0.

We provide convenience functions for users wishing to set the σ2\sigma^2 prior as in Chipman, George, and McCulloch (2010). In this case, ν\nu is set by default to 3 and λ\lambda is calibrated as follows:

  1. An “overestimate,” σ̂2\hat{\sigma}^2, of σ2\sigma^2 is obtained via simple linear regression of yy on XX
  2. λ\lambda is chosen to ensure that p(σ2<σ̂2)=qp(\sigma^2 < \hat{\sigma}^2) = q for some value qq, typically set to a default value of 0.9.

This is done in stochtree via the calibrate_inverse_gamma_error_variance function.

# Load library
library(stochtree)

# Generate data
n <- 500
p <- 5
X <- matrix(runif(n*p), ncol = p)
f_XW <- (
    ((0 <= X[,1]) & (0.25 > X[,1])) * (-7.5) + 
    ((0.25 <= X[,1]) & (0.5 > X[,1])) * (-2.5) + 
    ((0.5 <= X[,1]) & (0.75 > X[,1])) * (2.5) + 
    ((0.75 <= X[,1]) & (1 > X[,1])) * (7.5)
)
noise_sd <- 1
y <- f_XW + rnorm(n, 0, noise_sd)

# Test/train split
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))
train_inds <- (1:n)[!((1:n) %in% test_inds)]
X_test <- X[test_inds,]
X_train <- X[train_inds,]
y_test <- y[test_inds]
y_train <- y[train_inds]

# Calibrate the scale parameter for the variance term as in Chipman et al (2010)
nu <- 3
lambda <- calibrate_inverse_gamma_error_variance(y_train, X_train, nu = nu)

Now we run a BART model with this variance parameterization

bart_params <- list(a_global = nu/2, b_global = (nu*lambda)/2)
bart_model <- bart(X_train = X_train, y_train = y_train, X_test = X_test, 
                   num_gfr = 0, num_burnin = 1000, num_mcmc = 100, 
                   params = bart_params)

Inspect the out-of-sample predictions of the model

plot(rowMeans(bart_model$y_hat_test), y_test, xlab = "predicted", ylab = "actual")
abline(0,1,col="red",lty=3,lwd=3)

Inspect the posterior samples of σ2\sigma^2

plot(bart_model$sigma2_global_samples, ylab = "sigma^2", xlab = "iteration")
abline(h = noise_sd^2, col = "red", lty = 3, lwd = 3)

References

Chipman, Hugh A., Edward I. George, and Robert E. McCulloch. 2010. BART: Bayesian additive regression trees.” The Annals of Applied Statistics 4 (1): 266–98. https://doi.org/10.1214/09-AOAS285.