Package index
Supervised learning
High-level functionality for training supervised Bayesian tree ensembles (BART, XBART)
-
bart()
- Run the BART algorithm for supervised learning.
-
predict(<bartmodel>)
- Predict from a sampled BART model on new data
Causal inference
High-level functionality for estimating causal effects using Bayesian tree ensembles (BCF, XBCF)
-
bcf()
- Run the Bayesian Causal Forest (BCF) algorithm for regularized causal effect estimation.
-
predict(<bcfmodel>)
- Predict from a sampled BCF model on new data
-
CppJson
- Class that stores draws from an random ensemble of decision trees
-
createCppJson()
- Create a new (empty) C++ Json object
-
createCppJsonFile()
- Create a C++ Json object from a Json file
-
createCppJsonString()
- Create a C++ Json object from a Json string
-
loadForestContainerJson()
- Load a container of forest samples from json
-
loadForestContainerCombinedJson()
- Combine multiple JSON model objects containing forests (with the same hierarchy / schema) into a single forest_container
-
loadForestContainerCombinedJsonString()
- Combine multiple JSON strings representing model objects containing forests (with the same hierarchy / schema) into a single forest_container
-
loadVectorJson()
- Load a vector from json
-
loadScalarJson()
- Load a scalar from json
-
loadRandomEffectSamplesJson()
- Load a container of random effect samples from json
-
loadRandomEffectSamplesCombinedJson()
- Combine multiple JSON model objects containing random effects (with the same hierarchy / schema) into a single container
-
loadRandomEffectSamplesCombinedJsonString()
- Combine multiple JSON strings representing model objects containing random effects (with the same hierarchy / schema) into a single container
-
saveBARTModelToJson()
- Convert the persistent aspects of a BART model to (in-memory) JSON
-
saveBARTModelToJsonFile()
- Convert the persistent aspects of a BART model to (in-memory) JSON and save to a file
-
saveBARTModelToJsonString()
- Convert the persistent aspects of a BART model to (in-memory) JSON string
-
createBARTModelFromJson()
- Convert an (in-memory) JSON representation of a BART model to a BART model object which can be used for prediction, etc...
-
createBARTModelFromJsonFile()
- Convert a JSON file containing sample information on a trained BART model to a BART model object which can be used for prediction, etc...
-
createBARTModelFromJsonString()
- Convert a JSON string containing sample information on a trained BART model to a BART model object which can be used for prediction, etc...
-
createBARTModelFromCombinedJson()
- Convert a list of (in-memory) JSON representations of a BART model to a single combined BART model object which can be used for prediction, etc...
-
createBARTModelFromCombinedJsonString()
- Convert a list of (in-memory) JSON strings that represent BART models to a single combined BART model object which can be used for prediction, etc...
-
saveBCFModelToJson()
- Convert the persistent aspects of a BCF model to (in-memory) JSON
-
saveBCFModelToJsonFile()
- Convert the persistent aspects of a BCF model to (in-memory) JSON and save to a file
-
saveBCFModelToJsonString()
- Convert the persistent aspects of a BCF model to (in-memory) JSON string
-
createBCFModelFromJsonFile()
- Convert a JSON file containing sample information on a trained BCF model to a BCF model object which can be used for prediction, etc...
-
createBCFModelFromJsonString()
- Convert a JSON string containing sample information on a trained BCF model to a BCF model object which can be used for prediction, etc...
-
createBCFModelFromJson()
- Convert an (in-memory) JSON representation of a BCF model to a BCF model object which can be used for prediction, etc...
-
createBCFModelFromCombinedJson()
- Convert a list of (in-memory) JSON strings that represent BCF models to a single combined BCF model object which can be used for prediction, etc...
-
createBCFModelFromCombinedJsonString()
- Convert a list of (in-memory) JSON strings that represent BCF models to a single combined BCF model object which can be used for prediction, etc...
-
ForestDataset
- Dataset used to sample a forest
-
createForestDataset()
- Create a forest dataset object
-
Outcome
- Outcome / partial residual used to sample an additive model.
-
createOutcome()
- Create an outcome object
-
RandomEffectsDataset
- Dataset used to sample a random effects model
-
createRandomEffectsDataset()
- Create a random effects dataset object
-
preprocessTrainData()
- Preprocess covariates. DataFrames will be preprocessed based on their column types. Matrices will be passed through assuming all columns are numeric.
-
preprocessPredictionData()
- Preprocess covariates. DataFrames will be preprocessed based on their column types. Matrices will be passed through assuming all columns are numeric.
-
convertPreprocessorToJson()
- Convert the persistent aspects of a covariate preprocessor to (in-memory) C++ JSON object
-
savePreprocessorToJsonString()
- Convert the persistent aspects of a covariate preprocessor to (in-memory) JSON string
-
createPreprocessorFromJson()
- Reload a covariate preprocessor object from a JSON string containing a serialized preprocessor
-
createPreprocessorFromJsonString()
- Reload a covariate preprocessor object from a JSON string containing a serialized preprocessor
-
Forest
- Class that stores a single ensemble of decision trees (often treated as the "active forest")
-
createForest()
- Create a forest
-
ForestModel
- Class that defines and samples a forest model
-
createForestModel()
- Create a forest model object
-
ForestSamples
- Class that stores draws from an random ensemble of decision trees
-
createForestSamples()
- Create a container of forest samples
-
ForestModelConfig
- Object used to get / set parameters and other model configuration options for a forest model in the "low-level" stochtree interface
-
createForestModelConfig()
- Create a forest model config object
-
GlobalModelConfig
- Object used to get / set global parameters and other global model configuration options in the "low-level" stochtree interface
-
createGlobalModelConfig()
- Create a global model config object
-
CppRNG
- Class that wraps a C++ random number generator (for reproducibility)
-
createCppRNG()
- Create an R class that wraps a C++ random number generator
-
calibrateInverseGammaErrorVariance()
- Calibrate the scale parameter on an inverse gamma prior for the global error variance as in Chipman et al (2022)
-
computeForestMaxLeafIndex()
- Compute and return the largest possible leaf index computable by
computeForestLeafIndices
for the forests in a designated forest sample container.
-
computeForestLeafIndices()
- Compute vector of forest leaf indices
-
computeForestLeafVariances()
- Compute vector of forest leaf scale parameters
-
resetActiveForest()
- Reset an active forest, either from a specific forest in a
ForestContainer
or to an ensemble of single-node (i.e. root) trees
-
resetForestModel()
- Re-initialize a forest model (tracking data structures) from a specific forest in a
ForestContainer
-
RandomEffectSamples
- Class that wraps the "persistent" aspects of a C++ random effects model (draws of the parameters and a map from the original label indices to the 0-indexed label numbers used to place group samples in memory (i.e. the first label is stored in column 0 of the sample matrix, the second label is store in column 1 of the sample matrix, etc...))
-
createRandomEffectSamples()
- Create a
RandomEffectSamples
object
-
RandomEffectsModel
- The core "model" class for sampling random effects.
-
createRandomEffectsModel()
- Create a
RandomEffectsModel
object
-
RandomEffectsTracker
- Class that defines a "tracker" for random effects models, most notably storing the data indices available in each group for quicker posterior computation and sampling of random effects terms.
-
createRandomEffectsTracker()
- Create a
RandomEffectsTracker
object
-
getRandomEffectSamples()
- Generic function for extracting random effect samples from a model object (BCF, BART, etc...)
-
getRandomEffectSamples(<bartmodel>)
- Extract raw sample values for each of the random effect parameter terms.
-
getRandomEffectSamples(<bcfmodel>)
- Extract raw sample values for each of the random effect parameter terms.
-
sampleGlobalErrorVarianceOneIteration()
- Sample one iteration of the (inverse gamma) global variance model
-
sampleLeafVarianceOneIteration()
- Sample one iteration of the leaf parameter variance model (only for univariate basis and constant leaf!)
-
resetRandomEffectsModel()
- Reset a
RandomEffectsModel
object based on the parameters indexed bysample_num
in aRandomEffectsSamples
object
-
resetRandomEffectsTracker()
- Reset a
RandomEffectsTracker
object based on the parameters indexed bysample_num
in aRandomEffectsSamples
object
-
rootResetRandomEffectsModel()
- Reset a
RandomEffectsModel
object to its "default" state
-
rootResetRandomEffectsTracker()
- Reset a
RandomEffectsTracker
object to its "default" state
-
stochtree
stochtree-package
- stochtree: Stochastic Tree Ensembles (XBART and BART) for Supervised Learning and Causal Inference