Package index
Supervised learning
High-level functionality for training supervised Bayesian tree ensembles (BART, XBART)
-
bart() - Run the BART algorithm for supervised learning.
-
predict(<bartmodel>) - Predict from a sampled BART model on new data
-
compute_bart_posterior_interval() - Compute posterior credible intervals for specified terms from a fitted BART model.
-
compute_contrast_bart_model() - Compute a contrast between two outcome prediction specifications for a BART model
-
sample_bart_posterior_predictive() - Sample from the posterior predictive distribution for outcomes modeled by BART
Causal inference
High-level functionality for estimating causal effects using Bayesian tree ensembles (BCF, XBCF)
-
bcf() - Run the Bayesian Causal Forest (BCF) algorithm for regularized causal effect estimation.
-
predict(<bcfmodel>) - Predict from a sampled BCF model on new data
-
compute_bcf_posterior_interval() - Compute posterior credible intervals for BCF model terms
-
compute_contrast_bcf_model() - Compute a contrast between two outcome prediction specifications for a BCF model
-
sample_bcf_posterior_predictive() - Sample from the posterior predictive distribution for outcomes modeled by BCF
-
CppJson - Class that stores draws from an random ensemble of decision trees
-
createCppJson() - Create a new (empty) C++ Json object
-
createCppJsonFile() - Create a C++ Json object from a Json file
-
createCppJsonString() - Create a C++ Json object from a Json string
-
loadForestContainerJson() - Load a container of forest samples from json
-
loadForestContainerCombinedJson() - Combine multiple JSON model objects containing forests (with the same hierarchy / schema) into a single forest_container
-
loadForestContainerCombinedJsonString() - Combine multiple JSON strings representing model objects containing forests (with the same hierarchy / schema) into a single forest_container
-
loadVectorJson() - Load a vector from json
-
loadScalarJson() - Load a scalar from json
-
loadRandomEffectSamplesJson() - Load a container of random effect samples from json
-
loadRandomEffectSamplesCombinedJson() - Combine multiple JSON model objects containing random effects (with the same hierarchy / schema) into a single container
-
loadRandomEffectSamplesCombinedJsonString() - Combine multiple JSON strings representing model objects containing random effects (with the same hierarchy / schema) into a single container
-
saveBARTModelToJson() - Convert the persistent aspects of a BART model to (in-memory) JSON
-
saveBARTModelToJsonFile() - Convert the persistent aspects of a BART model to (in-memory) JSON and save to a file
-
saveBARTModelToJsonString() - Convert the persistent aspects of a BART model to (in-memory) JSON string
-
createBARTModelFromJson() - Convert an (in-memory) JSON representation of a BART model to a BART model object which can be used for prediction, etc...
-
createBARTModelFromJsonFile() - Convert a JSON file containing sample information on a trained BART model to a BART model object which can be used for prediction, etc...
-
createBARTModelFromJsonString() - Convert a JSON string containing sample information on a trained BART model to a BART model object which can be used for prediction, etc...
-
createBARTModelFromCombinedJson() - Convert a list of (in-memory) JSON representations of a BART model to a single combined BART model object which can be used for prediction, etc...
-
createBARTModelFromCombinedJsonString() - Convert a list of (in-memory) JSON strings that represent BART models to a single combined BART model object which can be used for prediction, etc...
-
saveBCFModelToJson() - Convert the persistent aspects of a BCF model to (in-memory) JSON
-
saveBCFModelToJsonFile() - Convert the persistent aspects of a BCF model to (in-memory) JSON and save to a file
-
saveBCFModelToJsonString() - Convert the persistent aspects of a BCF model to (in-memory) JSON string
-
createBCFModelFromJsonFile() - Convert a JSON file containing sample information on a trained BCF model to a BCF model object which can be used for prediction, etc...
-
createBCFModelFromJsonString() - Convert a JSON string containing sample information on a trained BCF model to a BCF model object which can be used for prediction, etc...
-
createBCFModelFromJson() - Convert an (in-memory) JSON representation of a BCF model to a BCF model object which can be used for prediction, etc...
-
createBCFModelFromCombinedJson() - Convert a list of (in-memory) JSON strings that represent BCF models to a single combined BCF model object which can be used for prediction, etc...
-
createBCFModelFromCombinedJsonString() - Convert a list of (in-memory) JSON strings that represent BCF models to a single combined BCF model object which can be used for prediction, etc...
-
ForestDataset - Dataset used to sample a forest
-
createForestDataset() - Create a forest dataset object
-
Outcome - Outcome / partial residual used to sample an additive model.
-
createOutcome() - Create an outcome object
-
RandomEffectsDataset - Dataset used to sample a random effects model
-
createRandomEffectsDataset() - Create a random effects dataset object
-
preprocessTrainData() - Preprocess covariates for use in a
ForestDatasetat train time. -
preprocessPredictionData() - Preprocess covariates for use in a
ForestDatasetat prediction time. -
convertPreprocessorToJson() - Convert the persistent aspects of a covariate preprocessor to (in-memory) C++ JSON object
-
savePreprocessorToJsonString() - Convert the persistent aspects of a covariate preprocessor to (in-memory) JSON string
-
createPreprocessorFromJson() - Reload a covariate preprocessor object from a JSON string containing a serialized preprocessor
-
createPreprocessorFromJsonString() - Reload a covariate preprocessor object from a JSON string containing a serialized preprocessor
-
Forest - Class that stores a single ensemble of decision trees (often treated as the "active forest")
-
createForest() - Create a forest
-
ForestModel - Class that defines and samples a forest model
-
createForestModel() - Create a forest model object
-
ForestSamples - Class that stores draws from an random ensemble of decision trees
-
createForestSamples() - Create a container of forest samples
-
ForestModelConfig - Object used to get / set parameters and other model configuration options for a forest model in the "low-level" stochtree interface
-
createForestModelConfig() - Create a forest model config object
-
GlobalModelConfig - Object used to get / set global parameters and other global model configuration options in the "low-level" stochtree interface
-
createGlobalModelConfig() - Create a global model config object
-
CppRNG - Class that wraps a C++ random number generator (for reproducibility)
-
createCppRNG() - Create an R class that wraps a C++ random number generator
-
calibrateInverseGammaErrorVariance() - Calibrate the scale parameter on an inverse gamma prior for the global error variance as in Chipman et al (2022)
-
computeForestMaxLeafIndex() - Compute and return the largest possible leaf index computable by
computeForestLeafIndicesfor the forests in a designated forest sample container. -
computeForestLeafIndices() - Compute vector of forest leaf indices
-
computeForestLeafVariances() - Compute vector of forest leaf scale parameters
-
resetActiveForest() - Reset an active forest, either from a specific forest in a
ForestContaineror to an ensemble of single-node (i.e. root) trees -
resetForestModel() - Re-initialize a forest model (tracking data structures) from a specific forest in a
ForestContainer
-
RandomEffectSamples - Class that wraps the "persistent" aspects of a C++ random effects model.
-
createRandomEffectSamples() - Create a
RandomEffectSamplesobject -
RandomEffectsModel - The core "model" class for sampling random effects.
-
createRandomEffectsModel() - Create a
RandomEffectsModelobject -
RandomEffectsTracker - Class that defines a "tracker" for random effects models, most notably storing the data indices available in each group for quicker posterior computation and sampling of random effects terms.
-
createRandomEffectsTracker() - Create a
RandomEffectsTrackerobject -
getRandomEffectSamples() - Generic function for extracting random effect samples from a model object (BCF, BART, etc...)
-
getRandomEffectSamples(<bartmodel>) - Extract raw sample values for each of the random effect parameter terms.
-
getRandomEffectSamples(<bcfmodel>) - Extract raw sample values for each of the random effect parameter terms.
-
sampleGlobalErrorVarianceOneIteration() - Sample one iteration of the (inverse gamma) global variance model
-
sampleLeafVarianceOneIteration() - Sample one iteration of the leaf parameter variance model (only for univariate basis and constant leaf!)
-
resetRandomEffectsModel() - Reset a
RandomEffectsModelobject based on the parameters indexed bysample_numin aRandomEffectsSamplesobject -
resetRandomEffectsTracker() - Reset a
RandomEffectsTrackerobject based on the parameters indexed bysample_numin aRandomEffectsSamplesobject -
rootResetRandomEffectsModel() - Reset a
RandomEffectsModelobject to its "default" state -
rootResetRandomEffectsTracker() - Reset a
RandomEffectsTrackerobject to its "default" state
-
sample_without_replacement() - Draw
sample_sizesamples frompopulation_vectorwithout replacement, weighted bysampling_probabilities -
expand_dims_1d() - Convert scalar input to vector of dimension
output_size, or check that input array is equivalent to a vector of dimensionoutput_size. -
expand_dims_2d() - Ensures that input is propagated appropriately to a matrix of dimension
output_rowsxoutput_cols. -
expand_dims_2d_diag() - Convert scalar input to square matrix of dimension
output_sizexoutput_sizewithinputalong the diagonal, or check that input array is equivalent to a square matrix of dimensionoutput_sizexoutput_size.
-
stochtreestochtree-package - stochtree: Stochastic Tree Ensembles (XBART and BART) for Supervised Learning and Causal Inference