Calibrate the scale parameter on an inverse gamma prior for the global error variance as in Chipman et al (2022)
Source:R/calibration.R
calibrateInverseGammaErrorVariance.RdChipman, H., George, E., Hahn, R., McCulloch, R., Pratola, M. and Sparapani, R. (2022). Bayesian Additive Regression Trees, Computational Approaches. In Wiley StatsRef: Statistics Reference Online (eds N. Balakrishnan, T. Colton, B. Everitt, W. Piegorsch, F. Ruggeri and J.L. Teugels). https://doi.org/10.1002/9781118445112.stat08288
Arguments
- y
Outcome to be modeled using BART, BCF or another nonparametric ensemble method.
- X
Covariates to be used to partition trees in an ensemble or series of ensemble.
- W
(Optional) Basis used to define a "leaf regression" model for each decision tree. The "classic" BART model assumes a constant leaf parameter, which is equivalent to a "leaf regression" on a basis of all ones, though it is not necessary to pass a vector of ones, here or to the BART function. Default:
NULL.- nu
The shape parameter for the global error variance's IG prior. The scale parameter in the Sparapani et al (2021) parameterization is defined as
nu*lambdawherelambdais the output of this function. Default:3.- quant
(Optional) Quantile of the inverse gamma prior distribution represented by a linear-regression-based overestimate of
sigma^2. Default:0.9.- standardize
(Optional) Whether or not outcome should be standardized (
(y-mean(y))/sd(y)) before calibration oflambda. Default:TRUE.