Skip to contents

Create a RandomEffectsModel object

This function is intended for advanced use cases in which users require detailed control of sampling algorithms and data structures. Minimal input validation and error checks are performed – users are responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree's advanced workflow, we provide several vignettes at stochtree.ai

Usage

createRandomEffectsModel(num_components, num_groups)

Arguments

num_components

Number of "components" or bases defining the random effects regression

num_groups

Number of random effects groups

Value

RandomEffectsModel object

Examples

n <- 100
rfx_group_ids <- sample(1:2, size = n, replace = TRUE)
rfx_basis <- matrix(rep(1.0, n), ncol=1)
num_groups <- length(unique(rfx_group_ids))
num_components <- ncol(rfx_basis)
rfx_model <- createRandomEffectsModel(num_components, num_groups)